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Abstract

The Pallet Loading Problem (PLP) maximizes the number of identical rectangular boxes placed within a rectangular
pallet. Boxes may be rotated 90� so long as they are packed with edges parallel to the pallet’s edges, i.e., in an orthogonal
packing. This paper defines the Minimum Size Instance (MSI) of an equivalence class of PLP, and shows that every class
has one and only one MSI. We develop bounds on the dimensions of box and pallet for the MSI of any class. Applying our
new bounds on MSI dimensions, we present an algorithm for MSI generation and use it to enumerate all 3,080,730 equiv-
alence classes with an area ratio (pallet area divided by box area) smaller than 101 boxes. Previous work only provides
bounds on the ratio of box dimensions and only considers a subset of all classes presented here.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We identify each instance of a Pallet Loading Problem (PLP) by a quadruple (X,Y,a,b). We have a
rectangular pallet with length X and width Y (X P Y), and a rectangular box with length a and width b

(a P b). Boxes may be rotated 90� so long as they are placed with edges parallel to the pallet’s edges, i.e.,
the packing must be orthogonal. We can assume, without loss of generality, that X, Y, a, b are positive integers
(e.g., Bischoff and Dowsland, 1982). We also assume that at least one box can be packed in the pallet: X P a

and Y P b.
We encounter PLP when trying to maximize the number of identical boxes with dimensions a and b, placed

on a pallet with dimensions X and Y where each box has a ‘‘this side up’’ restriction (e.g., Bischoff and Dows-
land, 1982). Even without the ‘‘this side up’’ restriction, operational considerations may dictate the use of ver-
tical layers with the same height. Issues of stability and safety of the boxes imply the use of orthogonal packing
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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(e.g., Dowsland, 1987a; Nelissen, 1995; Young-Gun and Maing-Kyu, 2001). PLP also arises in some cutting
stock and floor design settings.

Although PLP has been widely studied and it is known that instances can be divided into classes with the
same optimal placement pattern (Dowsland, 1984), no procedure to generate all distinct classes for a given
number of boxes has previously been reported. Dowsland (1987b) works with a subset of approximately
8000 equivalence classes and Scheithauer and Terno (1996) work with a randomly-generated subset of approx-
imately 50,000 equivalence classes. A common set of restrictions on pallet and box dimensions first proposed
by Dowsland (1984) has been used by other authors (e.g., Nelissen, 1993; Scheithauer and Terno, 1996; Mor-
abito and Morales, 1998). These restrictions are on the aspect ratio of the pallet (1 6 X/Y 6 2), of the box
(1 6 a/b 6 4), and the area ratio (1 6 (X * Y)/(a * b) < 51). Nelissen (1995) and Naujoks (as reported by Nelis-
sen (1995)) also investigate instances where 51 6 (X * Y)/(a * b) < 101 as do more recent papers (e.g., Alvarez-
Valdes et al., 2005; Birgin et al., 2005; Lins et al., 2003) that apply exact algorithms and heuristics to a com-
mon set of about 50,000 instances. Recent work also includes detailed analysis of upper bounds for PLP
(Letchford and Amaral, 2001).

This paper defines the Minimum Size Instance (MSI) of an equivalence class of PLP, and shows that every
class has one and only one MSI. We develop bounds on the dimensions of box and pallet in the MSI of each
class. Applying our newly-developed bounds on the MSI dimensions, we present an algorithm for MSI gen-
eration and use it to enumerate all 3,080,730 equivalence classes with an area ratio (pallet area divided by box
area) smaller than 101 boxes. Previous work only provides bounds on the ratio of box dimensions and only
considers a subset of all classes: this limits results. Martins (2003) finds all instances from 3,073,724 of these
3,080,730 classes can be solved easily. Given the small number of difficult instances, it is not surprising that
many have been previously overlooked.

2. Efficient partitions and equivalence classes

Some PLP instances, with different dimensions, possess the same arrangement of boxes in an optimal solu-
tion. For example, the arrangement depicted in Fig. 1 is an optimal solution to the instance (22, 16, 5, 3) where
the shaded regions indicate unused (wasted) areas of the pallet. The same arrangement is also optimal, for
example, to instances (30, 22, 7, 4) and (50, 36, 11, 7).

Let (n,m) denote an ordered pair of non-negative integers satisfying
Fig. 1.
class.
n � aþ m � b 6 S ð1Þ

for a pallet dimension S, which could be X or Y. Such an ordered pair (n,m) is called a feasible partition of S. If
n and m also satisfy
0 6 S � n � a� m � b < b ð2Þ
Optimal solution arrangement for instances (22, 16, 5, 3), (30, 22, 7, 4), (50, 36, 11, 7), and all instances within the same equivalence
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then (n,m) is called an efficient partition of S (Bischoff and Dowsland, 1982). For a pallet dimension S, the set
of efficient partitions of S, denoted by E(S,a,b), is defined to be the set of all feasible partitions (n,m) satisfying
n 2 f0; 1; . . . ; bS=acg and m ¼ bðS � n � aÞ=bc.
Dowsland (1984) shows that if two instances of PLP possess the same set of efficient partitions for both the
pallet width and length, then both instances share the same set of optimal solutions. This defines a relation in
the set of instances of PLP, which is reflexive, symmetric, and transitive. Therefore, the set of instances of PLP
can be divided into equivalence classes, based on the set of efficient partitions. If a solution is known for a class
representative, then this solution can be used on any other instance in the class. Because multiplying all dimen-
sions by an integer produces a new instance in the same class, it is easy to see that each class contains infinitely
many instances.

If, in addition, n and m satisfy
n � aþ m � b ¼ S;
then (n,m) is called a perfect partition of S (Dowsland, 1984). In general, each of these sets can be empty, but
the instance of an equivalence class with minimal pallet dimensions contains at least one perfect partition for
each dimension, X and Y (Dowsland, 1984). This is easily observed if we consider an arbitrary instance with-
out a perfect partition for a given dimension. In this case, we can reduce the corresponding dimension of the
pallet without altering the set of efficient partitions. This implies that the new instance, with a smaller pallet
dimension, also belongs to the same class.

3. Representing equivalence classes

Because instances of PLP in the same equivalence class share the same set of optimal solutions, once one
instance is solved, the solution can be stored in a database and retrieved whenever a solution to an instance of
PLP of the same class is necessary (Dowsland, 1987a). Many PLP instances are easily solved so storage may
only be necessary for difficult instances. The most straightforward way to identify an equivalence class in a
database is to encode the set of efficient partitions defining the class. This way, given a new instance, it is pos-
sible to compute the set of efficient partitions and compare it with the entries in the database. One possible
problem is that the cardinality of this set increases with the number of boxes packed.

Another approach is to select a unique class representative. This way, only four integers are necessary to
represent the class, independent of the number of boxes in the optimum packing. One option for defining
an equivalence-class representative is the instance that minimizes the area ratio, the Minimum Area Ratio

Instance (MARI). But the minimization problem can have a solution at an open boundary, or at a non-integral
interior point (Dowsland, 1984). In these cases the dimensions of the MARI can only be approximated, when
using integers. Different approximations can generate different instances within the same class, complicating
the identification process.

Another candidate for equivalence-class representative is the Minimum Size Instance (MSI), the instance
that minimizes the dimensions of both the pallet and the box. We say ðeX ; eY ; ~a; ~bÞ is the Minimum Size Instance

of a class if for all instances (X,Y,a,b) in the same class, eX 6 X , eY 6 Y , ~a 6 a; ~b 6 b.

4. Existence and uniqueness of the minimum size instance

When a dimension of the pallet is not a non-negative integer combination of the box’s dimensions, Dows-
land (1984) observes that the dimension of the pallet can be reduced. Let G(S,a,b) = max(i,j)2E(S,a,b)

{i * a + j * b}. We call G(S,a,b) the Perfect Partition Equivalent function. Given an instance (X,Y,a,b) of
PLP, the reduced dimensions of the pallet are given by X* = G(X,a,b), and Y* = G(Y,a,b). Therefore, if
the dimensions of the box in the MSI, ~a and ~b, are known, then the dimensions of the pallet are given byeX ¼ GðX ; ~a; ~bÞ and eY ¼ GðY ; ~a; ~bÞ.

We show that the MSI is unique in a class and its dimensions can be easily bounded, simplifying the process
of enumerating equivalence classes.
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Theorem 1. Every equivalence class of PLP has one and only one MSI.

Proof. We initially show that there is no more than one MSI in each class. Then we show that every class has
at least one MSI.

Suppose (X1,Y1,a1,b1) and (X2,Y2,a2,b2) are two MSIs in an equivalence class. By definition, both
instances minimize all dimensions of the pallet and the box (X1 6 X2, Y1 6 Y2, a1 6 a2, a1 6 a2 and X2 6 X1,
Y2 6 Y1, a2 6 a1, a2 6 a1), implying X1 = X2, Y1 = Y2, a1 = a2, a1 = a2. Therefore, if there is a MSI, it is
unique.

Now consider an equivalence class. Because the dimensions of the pallet in the MSI are a function of the
dimensions of the box in the MSI, the only way for a class not to have an MSI is if there exists one instance,
say ðX 1; Y 1; ~a; b1Þ, with minimum length for the box (i.e., ~a 6 a for all instances (X,Y,a,b) in the same class)
and another instance, ðX 2; Y 2; a2; ~bÞ, in which the box has minimum width (i.e., ~b 6 b for all instances
(X,Y,a,b) in the class). In this case, a2 > ~a and b1 > ~b. The strict inequalities hold because otherwise at least
one of the instances would have the box with both minimum dimensions. As both instances belong to the same
class, EðX 1; ~a; b1Þ ¼ EðX 2; a2; ~bÞ and EðY 1; ~a; b1Þ ¼ EðY 2; a2; ~bÞ. We show that the MSI can be identified from
these two instances.

As Dowsland (1987a) shows, a scaled instance of PLP remains in the same equivalence class. After
scaling, the dimensions of the pallet and box may no longer be integers. Normalizing the width of the box
to 1 in the above instances, we obtain instances ðX 1=b1; Y 1=b1; ~a=b1; 1Þ and ðX 2=~b; Y 2=~b; a2=~b; 1Þ.
Because b1 > ~b and ~b > 0, then 1=~b > 1=b1, and this result together with a2 > ~a give us a2=~b > ~a=~b > ~a=b1.
Because an equivalence class is a convex set (Nelissen, 1993), there is an instance ðX 0; Y 0; ~a=~b; 1Þ in the class.
If we multiply the dimensions by ~b we obtain the instance ðX 0 � ~b; Y 0 � ~b; ~a; ~bÞ. We can apply the
perfect partition equivalent function, obtaining eX ¼ GðX 0 � ~b; ~a; ~bÞ ¼ maxði;jÞ2EðX 1;~a;b1Þfi � ~aþ j � ~bg because

EðX 0 � ~b; ~a; ~bÞ ¼ EðX 1; ~a; b1Þ and eY ¼ GðY 0 � ~b; ~a; ~bÞ ¼ maxði;jÞ2EðY 1;~a;b1Þfi � ~aþ j � ~bg because EðY 0 � ~b; ~a; ~bÞ ¼
EðY 1; ~a; b1Þ. The instance ðeX ; eY ; ~a; ~bÞ satisfies the requirements to be the MSI of the class. Therefore, the class
has a MSI. h
5. Bounds on the dimensions of the MSI of an equivalence class

For instance (X,Y,a,b), let Ax � bX/ac, Ay � bY/ac, Bx � bX/bc, and By � bY/bc.
Dowsland (1987a) shows that a 6 Bx + 1 and b 6 Ax + 1 when considering the set of ratios a/b correspond-

ing to equivalence classes. While these limits on a and b bound the ratio, they do not bound a and b in an
equivalence class. For example, instance (104, 90, 15, 13), MSI of its class, where Ax = 6, Ay = 6, Bx = 8,
By = 6, with b = Ax + Ay + 1 and a = Bx + By + 1. Theorem 2 shows these are upper bounds for any MSI.

Theorem 2. ~b 6 Ax þ Ay þ 1 and ~a 6 Bx þ By þ 1.

Proof. Given instance (X,Y,a,b), the optimal solution to the integer program below is the MSI for its equiv-
alence class. Using the optimal solution to its linear programming relaxation, we show how to construct a PLP
instance from the equivalence class that satisfies the bounds of Theorem 2.

Indices

i efficient partitions on length, i = 0, . . . ,Ax,
f efficient partitions on width, f = 0, . . . ,Ay.
Data
pxi number of boxes with their largest dimension oriented, vertically in partition i of the length,
pyf number of boxes with their largest dimension oriented horizontally in partition f of the width.
Variables

ðX
^
; Y
^
; a
^
; b
^

Þ variables for (X,Y,a,b).
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Formulation
Minimize b
^

subject to

X
^

�i � a
^�pxi � b

^

P 0; 8i 2 f0; 1; . . . ;Axg; ðS1Þ

i � a
^þðpxi þ 1Þ � b

^

�X
^

P 1; 8i 2 f0; 1; . . . ;Axg; ðS2Þ

ðAx þ 1Þ � a
^�X

^

P 1; ðS3Þ

Y
^

�f � a
^�pyf � b

^

P 0; 8f 2 f0; 1; . . . ;Ayg; ðS4Þ

f � a
^þðpyf þ 1Þ � b

^

� Y
^

P 1; 8f 2 f0; 1; . . . ;Ayg; ðS5Þ

ðAy þ 1Þ � a
^� Y

^

P 1. ðS6Þ

X
^

; Y
^

; a
^
; b
^

integer
We know from Theorem 1 that we can minimize a
^

or b
^

and obtain the MSI, here we minimize b
^

. The con-
straint sets (S1) and (S4) ensure feasible partitions, Eq. (1), and are called fitting constraints. The other con-
straint sets ensure efficient partitions, Eq. (2), and are called efficiency constraints. We call the linear
programming relaxation (Primal).

Inspection of constraints (S1) and (S2) reveals that the addition of the constraints corresponding to the

same value of i in each set bounds b
^

below by 1, i.e., ðX
^
�i � a

^�pxi � b
^

Þ þ ði � a
^þðpxi þ 1Þ � b

^

�X
^
Þ ¼ b

^

P 1.

Therefore, when (Primal) is feasible, it has an optimal solution ðX �
^

; Y �
^

; a�
^

; b�
^

Þ, with objective function value at
least 1. In this optimal solution, at least four constraints are binding because it is a four-dimensional linear
program and the variables have no non-negativity constraints.

Because the MSI of a class has one perfect partition in each dimension, then, at least two fitting constraints,
one in the length (S1) and one in the width (S4), are binding in an optimal solution. Also, at least one efficiency
constraint is binding – from (S2), (S3), (S5) or (S6).

The dual of (Primal) has only four rows because the primal has only four variables. This makes it easier to
work with the dual.

Let s ¼ ðs1;0; . . . ; s1;Ax ; s2;0; . . . ; s2;Ax ; s3; s4;0; . . . ; s4;Ay ; s5;0; . . . ; s5;Ay ; s6Þ, be the vector of dual variables of
(Primal). The vector shows six groups of variables corresponding to the first and last dual variable for
constraint sets (S1)–(S6). The dual (Dual) of (Primal) is given by
Max
XAx

i¼0

s2i þ s3 þ
XAy

f¼0

s5f þ s6

subject to

XAx

i¼0

ðs2i � s1iÞ � iþ ðAx þ 1Þ � s3 þ
XAy

f¼0

ðs5f � s4f Þ � f þ ðAy þ 1Þ � s6 ¼ 0;

XAx

i¼0

ððpxi þ 1Þ � s2i � pxi � s1iÞ þ
XAy

f¼0

ððpyf þ 1Þ � s5f � pyf � s4f Þ ¼ 1;

XAx

i¼0

ðs1i � s2iÞ � s3 ¼ 0;

XAy

f¼0

ðs4f � s5f Þ � s6 ¼ 0;

s P 0:
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Let P be the matrix of technological coefficients of (Primal). Then PT has the following structure:
0 . . . �Ax 0 . . . Ax Ax þ 1 0 . . . �Ay 0 . . . Ay Ay þ 1

�px0 . . . �pxAx
px0 þ 1 . . . pxAx

þ 1 0 �py0 . . . �pyAy
py0 . . . pyAy

þ 1 0

1 . . . 1 �1 . . . �1 �1 0 . . . 0 0 . . . 0 0

0 . . . 0 0 . . . 0 0 1 . . . 1 �1 . . . �1 �1

2
6664

3
7775.
In every optimal dual solution, there is an optimal basis that contains one column corresponding to a perfect
X-partition, and another column corresponding to a perfect Y-partition. This follows from (Primal), in which
there is always one binding X-partition row and one binding Y-partition row. Therefore, two of the columns in
the basis look like
� �
� �
1 0

0 1

2
6664

3
7775.
Also, the optimal basis contains at least one column corresponding to a binding efficiency constraint in the
primal, or otherwise the dual objective function would have value zero. Therefore, the basis contains at least
one of the following columns:
�
�
�1

0

2
6664

3
7775 or

�
�
0

�1

2
6664

3
7775.
Considering the conditions above, the optimal basis has one of the following layouts, not considering an ex-
change in the last two rows:
ð1Þ

� � � �
� � � �
1 0 �1 �1

0 1 0 0

2
6664

3
7775; ð2Þ

� � � �
� � � �
1 0 �1 1

0 1 0 0

2
6664

3
7775; ð3Þ

� � � �
� � � �
1 0 �1 0

0 1 0 1

2
6664

3
7775; or ð4Þ

� � � �
� � � �
1 0 �1 0

0 1 0 �1

2
6664

3
7775.
Let B be a basis, and let sb = (sp, sq, sr, ss) be the corresponding vector of basic variables. The coefficients of
the first two rows of the basis are identified as bk,l, k = 1,2, l = 1,2,3,4, where k indicates the row and l the
column. If the column corresponds to a fitting constraint in (Primal), its coefficients are identified by bk;l.

The cost coefficients for the (Dual) objective function take value 0 for fitting constraints, and 1 for efficiency
constraints. Therefore, the vectors of cost coefficients corresponding to the cases above are respectively

(1) (0, 0,1,1),
(2) (0, 0,1,0),
(3) (0, 0,1,0) or
(4) (0, 0,1,1).

In all four cases, we can reduce the system of equations to a 2 · 2 system.
Case ð1Þ. The system is given by
b1;1 � sp þ b1;2 � sq þ b1;3 � sr þ b1;4 � ss ¼ 0;

b2;1 � sp þ b2;2 � sq þ b2;3 � sr þ b2;4 � ss ¼ 1;

sp � sr � ss ¼ 0;

sq ¼ 0:
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We use sq = 0 and sp = sr + ss, and obtain the following system:
ðb1;3 þ b1;1Þ � sr þ ðb1;4 þ b1;1Þ � ss ¼ 0;

ðb2;3 þ b2;1Þ � sr þ ðb2;4 þ b2;1Þ � ss ¼ 1:
Case ð2Þ. The system is given by
b1;1 � sp þ b1;2 � sq þ b1;3 � sr þ b1;4 � ss ¼ 0;

b2;1 � sp þ b2;2 � sq þ b2;3 � sr þ b2;4 � ss ¼ 1;

sp � sr þ ss ¼ 0;

sq ¼ 0:
We use sq = 0 and sr = sp + ss, and obtain the following system:
ðb1;3 þ b1;1Þ � sp þ ðb1;3 þ b1;4Þ � ss ¼ 0;

ðb2;3 þ b2;1Þ � sp þ ðb2;3 þ b2;4Þ � ss ¼ 1:
Case ð3Þ. The system is given by
b1;1 � sp þ b1;2 � sq þ b1;3 � sr þ b1;4 � ss ¼ 0;

b2;1 � sp þ b2;2 � sq þ b2;3 � sr þ b2;4 � ss ¼ 1;

sp � sr ¼ 0;

sq þ ss ¼ 0:
We use sp = sr and sq = �ss, and obtain the following system:
ðb1;3 þ b1;1Þ � sr þ ðb1;4 � b1;2Þ � ss ¼ 0;

ðb2;3 þ b2;1Þ � sr þ ðb2;4 � b2;2Þ � ss ¼ 1:
Case ð4Þ. The system is given by
b1;1 � sp þ b1;2 � sq þ b1;3 � sr þ b1;4 � ss ¼ 0;

b2;1 � sp þ b2;2 � sq þ b2;3 � sr þ b2;4 � ss ¼ 1;

sp � sr ¼ 0;

sq � ss ¼ 0:
We use sp = sr and sq = ss, and obtain the following system:
ðb1;3 þ b1;1Þ � sr þ ðb1;4 þ b1;2Þ � ss ¼ 0;

ðb2;3 þ b2;1Þ � sr þ ðb2;4 þ b2;2Þ � ss ¼ 1:
In each of the four cases, let d be the determinant of the 2 · 2 matrix. The matrix is a basis and all elements are
integers, so jdjP 1. Therefore, the respective optimal objective function values are

(1) b�
^

¼ sr þ ss ¼ ð�ðb1;1 þ b1;4Þ þ ðb1;1 þ b1;3ÞÞ=d 6 jðb1;3 � b1;4Þ=dj 6 ðAx þ 1Þ=jdj,
(2) b�

^

¼ sr ¼ ðb1;1 � b1;4Þ=d 6 jðb1;1 � b1;4Þ=dj 6 Ax=jdj,
(3) b�

^

¼ sr ¼ ðb1;2 � b1;4Þ=d 6 jðb1;2 � b1;4Þ=dj 6 Ax=jdj, and

(4) b�
^

¼ sr þ ss ¼ ð�ðb1;4 þ b1;2Þ þ ðb1;3 þ b1;1ÞÞ=d 6 jððb1;3 þ b1;1Þ � ðb1;4 þ b1;2ÞÞ=dj 6 ðAx þ Ay þ 1Þ=jdj.

Because all elements of the basis are integers, b�
^

jdj is an integer.
In case (1), both coefficients are non-negative, corresponding to efficiency constraints, and one can take

value 0. Therefore, the maximum value of b�
^

jdj is Ax + 1.

In cases (2) and (3), all coefficients are non-positive, corresponding to fitting constraints, and one

coefficient, in each case, can take value 0. Therefore, the maximum value of b�
^

jdj is Ax.
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In case (4), if we consider the order of the rows as presented, the result follows because ðb1;3 þ b1;1Þ is
computed over constraints in X, taking maximum value Ax + 1, and ðb1;4 þ b1;2Þ is computed over constraints
in Y, taking minimum value �Ay. If the order of the rows is exchanged, the values obtained are also
exchanged, with ðb1;3 þ b1;1Þ taking maximum value Ay + 1 and ðb1;4 þ b1;2Þ taking minimum value �Ax.

Considering all four cases, we verify that Ax + Ay + 1 is an upper bound on b�
^

jdj. Scaling the optimal

(Primal) solution by jdj, jdjðX �
^

; Y �
^

; a�
^

; b�
^

Þ is an integer solution that is feasible to (Primal). We therefore have

an instance in the equivalence class with b ¼ b�
^

jdj and, by definition, ~b 6 b so
~b 6 Ax þ Ay þ 1. ð3Þ
If we minimize a
^

in (Primal), then the upper bound for ~a is
~a 6 Bx þ By þ 1: � ð4Þ
6. Identifying the MSI

Given an instance of PLP, (X,Y,a,b) or the corresponding set of efficient partitions, we test values for ~b,
starting at 1, and compute the other variables, until the MSI is found. Our algorithm operates with two main
loops. The outer loop selects values for ~b, from 1 to min{b,Ax + Ay + 1}. For each value of ~b, we compute the
range of ~a, R~a, given by R~a ¼ fa 2 Zþ : bBx � ~b=ðAx þ 1Þc < a 6 dððBx þ 1Þ � ~b� 1Þ=Axeg. The second loop enu-
merates values for ~a in R~a. With ~a and ~b, we compute eX ¼ GðX ; ~a; ~bÞ. If the selected values for eX , ~a, and ~b
satisfy the efficiency constraints, we repeat the same computations for eY , or otherwise try the next value
for ~a. If the inequalities for eY are not satisfied, we continue with the procedure: otherwise, instance
ðeX ; eY ; ~a; ~bÞ is the MSI. This algorithm is simple to implement, with time complexity OðB4

xÞ.

7. Generating equivalence classes

We enumerate the MSI of all equivalence classes with an area ratio smaller than 101 boxes per pallet. Also
we use the MSI to uniquely identify each class and, therefore, record only one instance per class.

If N is the maximum number of boxes that can be packed on a pallet, we have
Ax þ Ay 6 N þ 1 ð5Þ
and
Bx þ By 6 2N . ð6Þ

We recall some definitions to demonstrate these bounds. Any optimal must have at least Ax (Ay) boxes placed
side by side across the length (width) of the pallet, so Ax * Ay 6 N. If Ay = 0, then Ax 6 N and Ax + Ay 6 N. If
Ay P 1, then Ax 6 N/Ay and Ax + Ay 6 N/Ay + Ay 6 N + 1. Also, Bx (By) is the maximum number of boxes
that can be placed side by side across the length (width) of the pallet. Therefore, By 6 Bx 6 N and
By + Bx 6 2N.

Our PLP Equivalence Class Generation Algorithm (PLP-ECGA) has six main loops, and uses a list ordered
lexicographically by b, a and Y to maintain the distinct generated classes for given values of a and b. The out-
ermost loop determines the values for b, from 1 to N + 2, because ~b 6 Ax þ Ay þ 1 (3) and Ax + Ay 6 N + 1 (5).
The second loop selects values for a, from b + 1 to 2N + 1, because ~a 6 Bx þ By þ 1 (4) and Bx + By 6 2N (6),
except when b equals 1, when a can also be equal to 1. If the greatest common divisor of a and b is greater than 1,
then the second loop proceeds to the next value for a. Otherwise, the ordered list, with all generated classes, is
emptied. The third and fourth loops select among all the possible perfect partitions of the width for candidate Y.
The fifth and sixth loops select among the perfect partitions of the length for candidate X. If instance (X,Y,a,b)
has an area ratio bound not exceeding N and has not been generated before then it is recorded in the list.

It is possible to verify through the algorithm that the number of equivalence classes is bounded by a poly-
nomial in N, albeit a large polynomial. There are O(N2) ways of assigning values to a and b, corresponding to
the number of pairs of relatively prime numbers less than or equal to 2N. More precisely, the number is given



Table 1
Number of equivalence classes in groups based on the maximum number of boxes

Maximum number of boxes in each group Number of classes in each group Run time to generate all classes (seconds)

10 662 0
20 7309 3
50 216,095 295
100 3,080,730 14,667

Table 2
Distribution of values of b in the MSI in each class

Number of boxes Number of classes b = 1 b 6 2 b 6 5 b 6 10 b 6 20 b 6 50

10 662 92 276 609 662 662 662
20 7309 520 1760 4873 6659 7309 7309
50 216,095 6362 23,270 71,686 119,298 182,870 216,095
100 3,080,730 46,300 174,177 544,004 964,673 1,710,574 2,822,767

G.H.A. Martins, R.F. Dell / European Journal of Operational Research 179 (2007) 17–26 25
by
P2N

k¼1/ðkÞ, where /(k) is the Euler phi-function, which gives the number of integers less than k that are
relatively prime to k (Gallian, 1998). The loops corresponding to the width are executed O(N2) times for each
pair a and b. The same happens with the loops corresponding to the length. Therefore, the number of equiv-
alence classes, with area ratio bound up to N, is bounded above by a sixth-degree polynomial in N.

The instances generated with the PLP-ECGA procedure are divided in groups of up to 10, 20, 50 and 100
boxes per pallet, as defined by the area ratio bound. Table 1 presents in the second column the number of
equivalence classes of PLP in each group. The third column contains the time required, in seconds, to generate
the equivalence classes within each group on a Pentium III 600 MHz personal computer.

Table 2 presents the distribution of classes in each group, where the MSI is defined with b smaller than or
equal to 1, 2, 5, 10, 20, and 50. The first column defines the maximum number of boxes that can be packed in
an instance in the group of classes covered, as given by the area ratio bound. The second column lists the num-
ber of distinct classes in each group. The following columns present the number of classes.

For PLP instances with area ratio smaller than 101 boxes, 91% of the equivalence classes have a MSI where
the value of b is less than or equal to 50. The complete set of instances can be accessed at http://www.pallet-
loading.org. More details can be found in (Martins, 2003).

8. Conclusions

In this paper, we define the Minimum Size Instance (MSI) of an equivalence class of PLP, and show that
every class has one and only one MSI. This makes the MSI helpful in distinguishing equivalence classes. We
also develop bounds on the dimensions of the box and pallet in the MSI of a class. Previous work only pro-
vides bounds on the ratio of box dimensions. Applying the newly developed bounds to the MSI, we enumerate
the MSI of all equivalence classes with area ratio smaller than 101 and provide some statistics.
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